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OPERATOR THEORY ON DIFFERENTIAL
RIEMANNIAN GEOMETRY

Mohamed M.Osman”

Abstract .

This paper develop the Riemannian geometry of classical gauge theories , on compact
dimensional manifolds, some important properties of fields , the manifold structure of the
configuration space , we study the problem of differentially projection mapping parameterization

system by constructing rank k on surfaces n—k dimensional is sub manifold space R"

Index Terms- basic notion on differential geometry — differential between surfaces m, N = R

is called the differential manifolds- tangent and cotangent space- differentiable injective

manifold- Operator geometric on Riemannian manifolds.
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I. INTRODUCTION

The object of this paper is to familiarize the reader with the basic language of and some
fundamental theorem in Riemannian Geometry. To avoid referring to previous knowledge of
differentiable manifolds, we include surfaces , which contains those concepts and result on
differentiable manifolds which are used in an essential way in the rest of the paper . The first
section Il present the basic concepts of Riemannian Geometry ( Riemannian metrics ,
Riemannian connections , geodesics and curvature ) . A good part of the study of Riemannian
Geometry consists of understanding the relationship between geodesics and curvature , Jacobi
fields an essential tool for this understanding, are introduced in Il we introduce the second
fundamental from associated with an isometric immersion and prove a generalization of the
theorem Egregium of Riemannian Geometry this allows us to real the notion of curvature in
Riemannian manifolds to the classical concept of Gaussian curvature for surfaces. Starting we
begin the study of global questions we emphasize techniques if the calculus of variations which
we present without assuming a previous knowledge of the subject . Among other things we prove
that theorems of Riemannian Geometry one the most remarkable applications of these techniques
of calculus of variations the sphere theorem is presented in paper .In addition, we include a
uniformization theorem for manifolds of constant curvature and a study of the fundamental

group of compact manifolds of negative curvature .It is Euclidean in E" in that every point has a

neighbored, called a chart homeomorphism to an open subset of R" | the coordinates on a chart

allow one to carry out computations as though in a Euclidean space , so that many concepts from

R" such as differentiability, point derivations , tangents , cotangents spaces , and differential
forms carry over to a manifold. In this paper we given the basic definitions and properties of a
smooth manifold and smooth maps between manifolds , initially the only way we have to verify
that a space , we describe a set of sufficient conditions under which a quotient topological space
becomes a manifold is exhibit a collection of C* compatible charts covering the space becomes
a manifold , giving us a second way to construct manifolds , a topological manifolds C~ analytic
manifolds , stating with topological manifolds , which are Hausdorff second countable is locally
Euclidean space  We introduce the concept of maximal C~ atlas , which makes a topological
manifold into a smooth manifold , a topological manifold is a Hausdorff , second countable is

local Euclidean of dimension n .If every point pin M has a neighborhood Y such that there is
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a homeomorphism ¢ from U onto a open subset of R". We call the pair a coordinate map or
coordinate system on U . We said chart (U,¢) is centered at peU , ¢(p) =0, and we define
the smooth maps f :M — N where M, N are differential manifolds we will say that f is

smooth if there are atlases (U,,h,)on M and (V,,g,)on N.

Il. ABASICNOTIONS ON DIFFERENTIAL GEOMETRY

In this section is review of basic notions on differential geometry :

2.1 First principles

Hausdrff 2.1.1

A topological space M is called (Hausdorff ) if for all x,y € M there exist open sets such that
xeUand yevVand UV =¢

Second countable 2.1.2

A topological space M is second countable if there exists a countable basis for the topology on
M .

Locally Euclidean of dimension n 2.1.3

A topological space M is locally Euclidean of dimension n if for every point x € M there exists
on open set U € M and open set w — R" so that U and W are ( homeomorphic ).

Definition 2.1.3

A topological manifold of dimension n is a topological space that is Hausdorff, second countable
and locally Euclidean of dimension n .

Definition 2.1.4

A smooth atlas A of a topological space M is given by : (i) An open covering + .3 where
U M

Open and M =u,_, U, (ii) A family ¢ :U, —w, _3of homeomorphism ¢, onto open subsets
W, < R"so that if U, nU, = ¢ then the map ¢ €, "U, 3> o, €, U, is (a diffoemorphism
)

Definition 2.1.5

If Q,~U, #gthen the diffeomorphism ¢ €@, ~"U, >>¢, O, AU, is known as the (
transitition map ).

Definition 2.1.6

A smooth structure on a Hausdorff topological space is an equivalence class of atlases, with two
atlases A and B being equivalent if for @,,», = Aand (/J.,\PJ. } B with U, "V, # @then the
transition map ¢ @, NV, j—> Y, . NV, / is a diffeomorphism ( as a map between open sets of
R").

Definition 2.1.7

A smooth manifold M of dimension n is a topological manifold of dimension n together with a
smooth structure .
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Definition 2.1.8
Let M and N be two manifolds of dimension m,n respectively a map F:M — N is called

smooth at p € M if there exist charts @,¢ &, ¥ with peU cM and F(p) eV < N with
F(@U) <V and the composition WoFog™ :¢U) — ¥ (V)is a smooth ( as map between open
sets of R"is called smooth if it smooth at every pe M .

Definition 2.1.9
A map F:M — Nis called a diffeomorphism if it is smooth bijective and inverse

F*:N — M is also smooth.

Definition 2.1.10

A map F is called an embedding if F is an immersion and homeomorphic onto its image
Definition 2.1.11

If F:M — Nisanembedding then F(M) is an immersed submanifolds of N .

2.2 Tangent space and vector fields
Let C~(M, N)be smooth maps from ™M and N and let C~(M) smooth functions on M is

given a point p € M denote, C~(p) is functions defined on some open neighbourhood of pand
smooth at p.

Definition 2.2.1
(i) The tangent vector X tothe curve c: € s,& >> M at t =0is the map

c(0):C~(c(0)) — R given by the formula .
(1) X(f)=c(0)(f)=[¥

(ii) A tangent vector X at p = M is the tangent vector at t =0 of some curve «: €=, >>M
with «(0) = pthisis X =«/(0):C*(p) > R.

Remark 2.2.2

A tangent vector at pis known as a liner function defined on C*(p) which satisfies the (
Leibniz property )

(2 X(fg)=X(f)g+f X(g) ,Vf,geC”(p).

2.3 Differential

Given FeC"(M,N)and peMand X eT Mchoose a curve e :(—&,&)—> M with
a(0) = pand «'(0) = X this is possible due to the theorem about existence of solutions of liner
first order ODEs , then consider the map F.,:T,M —>T__ N mapping

F(p)

X — F. (X)=(Fe.a) (0), this is liner map between two vector spaces and it is independent

of the choice of « .
Definition 2.3.1
The liner map F. defined above is called the derivative or differential of Fat pwhile the

image F. (X)is called the push forward X at pe M.

Definition 2.3.2
Given a smooth manifold ™ a vector field V isamap V :M — TM mapping p —>V(p) =V,

and V is called smooth if it is smooth as a map from M to T™M .

j v e C*c(0)
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(Not) X (M) isan R vector space for Y,Z € X(M), pe M and

a,beR ,(aY +bz) =aV, 6 +bZ andfor f eC*(M),Y € X(M)define fY:M —TM
mapping p—(fY), =f(p)Y,

2.4 Cotangent space and Vector Bundles and Tensor Fields

Let M be a smooth n-manifolds and P € M We define cotangent space at P denoted by T,M
to be the dual space of the tangent space at P:T,(M)= 4:T,M —>R _ f smooth Element of
T,M are called cotangent vectors or tangent convectors at P.(i) For f:M — Rsmooth the
composition T,M =T, R=R s called df, and referred to the differential of f .Not that
df, T, M so it is a cotangent vector at P (ii) For a chart 0.4.x :of M and P <U then

i Nq. . * . i . d ’
& -.}IS a basis of T, M in fact 4 “is the dual basis of {dT} .

Definition 2.4.1

The elements in the tensor product V." =V ®...QV ®V™ ®...®V  gre called (r,s) tensors or
r-contravariant , s- contravariant tensor .

Remark 2.4.2

The Tensor product is bilinear and associative however it is in general not commutative that is

€ ®T, > &L ®T, in general .

Definition 2.4.3

T €V, is called reducible if it can be written inthe form T =V, ®..QV, ®L ®...® L for.

(3) V,®V, ,l' eV for l<i<r ,i<j<s,

Definition 2.4.4

Choose two indices € ij_ where 1<i<r,1<j<sfor any reducible tensor
T=V,®.®V,®L®..®L et C € =V, 'We extend this linearly to get a linear map
C/! V" =V "which is called tensor-contraction.

Remark 2.4.4

An ant symmetric ( or alternating €. k_ tensor) T €V, is called a k-form on V and the space of
all  k-formson V isdenoted A"V = R €V’ :T alternating .

Definition 2.4.5

A smooth real vector boundle of rank K denoted €. M, _is a smooth manifold E of dimension
n+1

The total space a smooth manifold M of dimension "N the manifold dimension N+Kand a
smooth subjective map 7 :E — M ( projection map ) with the following properties :

(i) There exists an open cover ¥. .3, of M and diffeomorphisms ¥, :7 *(V,) >V, xR

(i) For any point pe M ,¥, € *(p) } +$ 3R = R*and we get a commutative diagram ( in
this case =, :V_, xR —V_is projection onto the first component .

(iii) whenever V_, nV, = gthe diffeomorphism.

(4) w,o¥, ¢, ~V, 3R > € NV, 3R

takes the form ‘¥, ¥, €©.a > €, A, ,(p)(@) ,ae R"where A, V.V, >GL(K,R)js
called transition maps.
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2.5 Bundle Maps and isomorphisms
Suppose €, M,z and €M, = _are two vector bundles a smooth map F :E — E is called a

smooth bundle map from €, M,z to €, M,7 .
(i) There exists a smooth map f :M — M such that the following diagram commutes that

7€(q) > f€(q) forall peM
(if) F induces a linear map from E to E

Definition 2.5.1 Dual Bundle
Take a vector bundle €, M ,71': where E:u _,, E replace E_ with its dual E”, and consider

forany peM.

f(p)

E":u,., E.Let Vi, A by an in the transition maps for the dial bundle E"are denoted
wa > — @ Jobserve that wi @

Definition 2.5.2 Tensor product of vector Bundles }
Suppose €, M, = is vector bundle of rank k and €. l\7i,i/is vector bundle of rank 1 over the

same base manifold M then define E®E =u . E, ® E , this is well defined because E_and
E, are vector spaces . Let be an open cover of M, ¥, ,¥ ,A,,, A, be the local trivializations

and transition maps to E and E respectively then the transudation maps and local trivializations
for E® E are given .

(5) a®a > A ,a®A, ,acR*®R' =R, VaecR",aeR

Definition 2.5.3 i

Let F:M —> N be a smooth map between two smooth manifolds and we ' €’N be a k
covariant tensor field we define a K covariant tensor field F*wover M by .

(6) €'w (1, k/ Fb:é*pﬂlj,..,l:*p(kj,VVl,...,Vk eT,M

In this case F“wis called the pullback of w by F .

Proposition 2.5.4
Suppose F:M — N is a smooth map and G: N —Qa smooth map for M, N,Q smooth

manifolds and we T €°N J7< T €°N and f e C* @ then.

(i) GoF 2=F -G".

(i) F- @®7 BEw® F'w®F 77 in particular, F" € ow = € - F EF'w.

(iii) F@f =d€-F (iv) if peMand €' are local coordinates in a chart containing the
point F(p) € N then

F Q.. dy"®.0dy" =@, F d@"-F ®.®d€*"-F

2.6 Exterior derivative

The exterior derivative is a map d :Q"(M)— Q“*(M) which is R linear such that dod =0

and if f isa k vector fieldonM then @f ¥ >= Xf .

2.7 Integration of differential forms
i wis well defined only if M is orient able dim(M) =n and has a partition of unity and w

has compact support and is a differential n-formon M
2.8 Riemannian Manifolds
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An inner product (or scalar product) on a vector space V is a function (-,-):V xV — Rthatis:
(i)symmetric (u,v)=(v,u)forall u,vev .

(i)Bilinear  (au+bv,w)=a(u,w)+b(v,w)and (u,av+bw)=a(u,v)+b(u,w)for all
a,beRand VW€V

(iii) positive definite (u,v) >0 forall u=0.

Definition 2.8.1

A pair €1, g of a manifold M equipped with a Riemannian metric g is called a Riemannian

manifold.
2.9 Length and Angle between tangent vectors
Suppose €, g _is a Riemannian manifold and p « M we define the length ( or norm ) of a

tangent vector veT,Mto be |v|=,/(v,v) Recall g& >(.-)and the angle v,w between

MINY
Examples of Riemannian metrics 2.9.1
1. Euclidean metric ( canonical metric) g.. 0on R".

7
(g)Euc, =0, dx' @dx! =dx* @dx* +...+dx" ®dx" = dx'dx* +...+dx"dx"

2. Induced metric

Let €1,g be a Riemannian manifold and f : N — €4, g _an immersion where N is a smooth
manifold (thatis f isasmooth map and f is injective ) then induced metric on N is defined .
(8) €9 _C¢wW =9,,€CV) €W _ ,Vv,weT,N,peN

3. Induced metric i"g,,0n S"

The induced metric S”sometimes denoted g, |..from the Euclidean space R"*and g.,, by

the inclusion i:S* — R™is called the standard (or round ) metric on S"clearly iis an
immersion .Consider stereographic projection S* — R*and denote the inverse map
u:R* —S?then u'g,_,

Given the Riemannian metric for R?.
4. Product metric

If €1,,9, , €,,g, are two Riemannian manifolds then the product M, =M, admits a
Riemannian metric g = g, @ g, is called the product metric defined by .

©) g, ®u,,v, ®v,)=9g,u,,v,\)®g,(U,,V,)

Where u,,v, e T, M, for i =1,2,....we use the factthat T, (M, xM,)=T M, &T M, .

5. Warped product

Suppose €4,,9, , ©,,g, are two Riemannian manifolds then €1,=xM,, g, ® f?g, is the
warped product of g,,g,or denoted €1,,9, x, €,,g, Where f:M, — Ris a smooth

positive function.
(10) 61 D f 292 ;pz nz @UZ,Vl €|_)Vz :: glm qlvvlz_B f ()132pl (2,W2 —

v,weT,M €= 0=w by cos(v,w)=

A Quarterly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., [Js=NNECEECEMIIE! as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering, Science and Mathematics
http://www.ijmra.us



March IV Volume 5, Issue 1 ISSN: 2320-0294

2016 =

2.10 Conformal map and Isometric

Asmoothmap f :€1,g 3> @ ,h between two Riemannian manifolds is called a conformal
map with conformal factor 2:M — R*if € "h = 2g.

(Not)A conformal map preserves angles that is €, w > €.(v), f.(w) forall u,veT,M and

peM.

Example 2.10.1
S? < R®we consider stereographi projection S*/ p, — R?. As stereographic projection is a

diffeomorphism its inverse u: R — S/ p, is a conformal map . It follows from an exercise sheet
that U is a conformal map with conformal factor p(x,y) =2/€+x> +y> .

Definition 2.10.2 ‘

A Riemannian manifold € ,g s locally flat if for every point p e M there exist a conformal
diffeomorphism f :U — Vv between an open neighbourhoods U of pand V — R"of f(p).
Definition 2.10.3 )

Given two Riemannian manifold €1 ,g and &,h they are called isometric of there is a
diffeomorphism f : M — N such that f"h = g such that a differomorphism f is called an
isometric.

Remark 2.10.4
In particular an isometrics f :(M, g)— (M, g) is called an isometric of (M, g) . All

isometrics on a Riemannian manifold from a group .
Definition 2.10.5
(M, g), (N, h) are called locally isometric if for every point p M there is an isometric

f :U — Vv from an open neighbourhood U of pin M and an open neighbourhood Vv of
f(p)in N .
Definition 2.10.6
Suppose f : (M, g)— (N, h) is an immersion then f isisometricif f'h=g.
Definition 2.10.7
Let (M, g) be an oriented Riemannian n-manifold with its Riemannian volume from dv if f
is a compactly supported smooth function on M then f dV, is a new n-form which is
compactly supported we can define the integral of f over M as.
(11) '\{lf = [ f dv,
Recall the integration of n-forms over n-manifolds.
2.11 Bundle metrics

The recall from liner algebra on a vector space V a bilinear from B:V xV — R can be
considered as an element B € E” ® E” given a vector bundle (E, M, ) a bundle metric is a

map that assigns each fiber E_an inner product (-,-) which depends smoothlyon pe M .
Definition 2.11.1

A bundle metric h on the vector bundle (E, M, ) isanelementof T € ®E" :WhiCh is
stmmetric and positive definite.
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Remark 2.11.2
Given a vector bundle (E, M, 7) with a bundle metric h we can define an isomorphism

E — E"we can extend hto any (r,s) tensor products of E and E".

2.12 Differentiable injective manifold

the basically an m-dimensional topological manifold is a topological space M which is locally
homeomorphic to R™, definition is a topological space M is called an m-dimensional (
topological manifold ) if the following conditions hold.

(i) M is a hausdorff space.

(if) for any pe M there exists a neighborhood U of P which is homeomorphic to an open
subset V. < R™ (iii) M has a countable basis of open sets , coordinate charts (U,») Axiom

(iv) is equivalent to saying that p € M has a open neighborhood U P homeomorphic to open
disc D™in R™, axiom (v) says that M can covered by countable many of such neighborhoods ,
the coordinate chart (U,q) whereU are coordinate neighborhoods or charts and ¢ are
coordinate .

A homeomorphisms , transitions between different choices of coordinates are called
transitions maps ¢;; =@; o ¢; , Which are again homeomorphisms by definition , we usually
write p=¢ (X),9:U -V < R"as coordinates forU and p=¢ (x),¢ 1:V >U =M as
coordinates for U , the coordinate charts (U, ) are coordinate neighborhoods, or charts , and
@ are coordinate homeomorphisms , transitions between different choices of coordinates are
called transitions maps ¢;; = @; o ¢ Which are again homeomorphisms by definition , we

usually x=e(p),¢:U -V —R"as a parameterization U .A collection A= .U, ;, of
coordinate chart with M =,;U; is called atlas for M . The transition maps ¢;; a topological

space M is called ( hausdorff ) if for any pair p,g € M , there exist open neighborhoods p U
and g e U’ such thatu nU’ = ¢ for a topological space M with topology z €U can be written
as union of sets in B , a basis is called a countable basis £ is a countable set .

Definition 2.12.1

A topological space M is called an m-dimensional topological manifold with boundary
oM < M if the following conditions .

(i) M is hausdorff space.

(ii) for any point p € M there exists a neighborhoodU of p which is homeomorphism to an
opensubset V.cH™

(iii) M has a countable basis of open sets , can be rephrased as follows any point p €U is

contained in neighborhoodU to D™ ~ H™ the set M is a locally homeomorphism to R™ or H™
the boundary &M < M is subset of M which consists of points p.

Definition 2.12.2

Let X be asetatopology U for X is collection of X satisfying .

(i) gand X arein U (ii) the intersection of two members of U isin U

(iii) the union of any number of members U isin U . The set X with U is called a topological
space the membersU <u are called the open sets . let X be a topological space a subset
N < X with xe N is called a neighborhood of x if there is an open set U with xeU < N,
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for example if X a metric space then the closed ball D,(x)and the open ball D_(x)are
neighborhoods of x a subset C is said to closed if X \ C is open

Definition 2.12.3

A function f : X — Y between two topological spaces is said to be continuous if for every open
set U of v the pre-image f*(U)isopenin X .

Definition 2.12.4

Let X and Y be topological spaces we say that X and Y are homeomorphic if there exist
continuous function such that f - g =id, and go f =id, we write X =Y and say that f and
g are homeomorphisms between X and Y , by the definition a function f :X —Y is a
homeomorphisms if and only if .(i) f is a bijective .(ii) f is continuous (iii) f*is also
continuous.

2.5 Differentiable manifolds

A differentiable manifolds is necessary for extending the methods of differential calculus to
spaces more general R"a subset S — R2is regular surface if for every point p € Sthe a
neighborhood V of P is R®and mapping x:u = R?> -V ~ S open setU «— R? such that.

(i) xis differentiable homomorphism. (ii) the differentiable (dx),:R* — R®, the mapping x is
called a parametnzation of S at P the important consequence of differentiable of regular
surface is the fact that the transition also example below if x,:U, — S*and x,:U, — S*are
X, (U,) "Xz z) =w=g , the mappings x;* e x, :x*(w)—> R?and .

(12) X, o X5 = X5 (W) > R

Are differentiable . A differentiable structure on a set M induces a natural topology on M it
suffices to A< M to be an open set in M if and only if x;* (A~ x, (U,)) is an open set in R"

for all « it is easy to verify that M and the empty set are open sets that a union of open sets is
again set and that the finite intersection of open sets remains an open set. Manifold is necessary
for the methods of differential calculus to spaces more general than de R", a differential
structure on a manifolds ™M induces a differential structure on every open subset of M , in
particular writing the entries of an nxk matrix in succession identifies the set of all matrices

with R™K , an nxk matrix of rank k can be viewed as a k-frame that is set of k linearly
independent vectors in R", V, K <nis called the steels manifold ,the general linear group
GL (n) by the foregoing V,, . is differential structure on the group n of orthogonal matrices, we
define the smooth maps function f : M — N where M, N are differential manifolds we will say
that f is smooth if there are atlases €, ,h, on M, €g,gg _ONn N, such that the maps
gs f h, "t are smooth wherever they are defined f is a homeomorphism if is smooth and a
smooth inverse. A differentiable structures is topological is a manifold it an open covering U,
where each set U_ is homeoomorphic, via some homeomorphism h,to an open subset of

Euclidean space R", let M be a topological space , a chart in M consists of an open subset
U <M and a homeomorphism h of U onto an open subset of R™, a C"atlas on M is a

collection @, ,h, of charts such that theu , cover M and hg,h* the differentiable
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2.6 Definition ( Differentiable injective manifold )
A differentiable manifold of dimension Nis a set M and a family of injective mapping

X, < R" — M of open sets u, € R"into M such that.

(i) u,x,(u,)=M (ii) forany «,gwith x,(u,) "X,(U,)

(iii) the family (u,,x_)is maximal relative to conditions (I),(Il) the pair(u,,X_,)or the
mapping X, with p e x,, (u,) is called a parameterization , or system of coordinates of ™M ,
u,x,(u,) =M the coordinate charts (U,¢) where U are coordinate neighborhoods or charts ,

and ¢ are coordinate homeomorphisms transitions are between different choices of coordinates
are called transitions maps. )

(13) 25 oot
Which are anise homeomorphisms by definition , we usually write x=¢@(p),» U -V < R"
collection U and p=¢ *(x),¢ *:V —U <= M for coordinate charts with is M =UU, called an

atlas for M of topological manifolds. A topological manifold M for which the transition maps
o j = (¢ ) Tor all pairs ¢, ; in the atlas are homeomorphisms is called a differentiable , or

smooth manifold , the transition maps are mapping between open subset of R™,
homeomorphisms between open subsets of R™are C* maps whose inverses are also C* maps ,
for two chartsu; and U ; the transitions mapping.

(14) 2 Z(C’Jj0%_1)3@(Uimuj)—>(ﬂj(uimuj)

And as such are homeomorphisms between these open of R™, for example the differentiability
(¢" - ¢ 1) is achieved the mapping (¢” - (@) 1) and (@ - ¢ 1) which are homeomorphisms since
(A~ A”) by assumption this establishes the equivalence (A~ A”), for example let N and M be
smooth manifolds nand m respecpectively , and let f :N — M be smooth mapping in local
coordinates f'= (uo fo ¢_1;§0(U) —w (V) Figurer (5) ,with respects charts (U,¢) and
V.,y), the rank of fat peNis defined as the rank of f at ¢o(p)(i.e)
rk(f), =rk( f'),(p is the Jacobean of f at p this definition is independent of the chosen
chart , the commutative diagram in that.

(15) ‘ = oy STolprop™
Since (/ow*l;and (> o * are homeomorphisms it easily follows that which show that our
notion of rank is well defined @ f” 5 =J (/oz/fl; Ji€o gp‘l}l, if a map has constant
rank for all p e N we simply write rk (f), these are called constant rank mapping. The product
two manifolds ™M, and M,be twocCk-manifolds of dimensionn, and n,respectively the
topological space M, x M, are arbitral unions of sets of the form U <V whereU is open in M,
andV is open in M., can be given the structure C* manifolds of dimensionn, ,n, by defining
charts as follows for any charts M, on (j ¥ _on M, we declare that 0. xV; , @; <y is chart
oNn My x M, Where g <y :U; xV; — R(™*M2) s defined so that.

(16) o<y €p,q = € (p) , wi(a)_forall €,q =U; =V,
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A given aC* n-atlas, A on M for any other chart €, We say that €, ¢ is compatible with the
atlas A if every map ((pi ° ¢*1:and G- @t is C¥wheneveru nU; =0 the two atlases A and
A is compatible if every chart of one is compatible with other atlas . A sub manifolds of others
of R"for instance S2 is sub manifolds of R2it can be obtained as the image of map into R3or as
the level set of function with domain R®we shall examine both methods below first to develop
the basic concepts of the theory of Riemannian sub manifolds and then to use these concepts to
derive a equantitive interpretation of curvature tensor , some basic definitions and terminology
concerning sub manifolds, we define a tensor field called the second fundamental form which
measures the way a sub manifold curves with the ambient manifold , for example X be a sub
manifold of Y of »:E-—>X and g:E, —Y be two vector brindled and assume that E is
compressible , let f: E —Y and g:E, — Y be two tubular neighborhoods of X inY then there
exists acP™*. The smooth manifold , an n-dimensional manifolds is a set that looks like R". It
is a union of subsets each of which may be equipped with a coordinate system with coordinates
running over an open subset of R" . Here is a precise definition.

Definition 2.6 .1

Let M be a metric space we now define what is meant by the statement that M is an n-
dimensional C* manifold.

(i). Acharton M isa pair (U, o) with U an open subset of M and ¢ a homeomorphism a (1-
1) onto, continuous function with continuous inverse from U to an open subset of R", think of
@ as assigning coordinates to each point of U .

(if) Two charts (U, ) and (V,y) are said to be compatible if the transition functions .

(17)

Coo' SpUNV)cR 5pwUV)cR" , @Qoy? JyyU V)R > U V)R

Are c=that is all partial derivatives of all orders of wogp tand @oy *exist and are
continuous.
(i) Anatlas for M is a family A= QU;,¢;):ie1 of charts on ™M such that §J; .3, is an

open cover of M and such that every pair of charts in A are compatible . The index set 1 is
completely arbitrary . It could consist of just a single index. It could consist of uncountable many
indices . An atlas A is called maximal if every chart (U,®) on M that is compatible with every

chat of A.

(iii) An n-dimensional manifold consists of a metric space M together with a maximal atlas A
Example 2.6.2 (open subset of R™)

Let 1, be the identity map on R", then {2”, I, isanatlas for R" indeed , if U is any
nonempty open subset of R",then 4,1, isan atlas for U so every open subset of R" is

naturally a C* manifold.
Example 2.6.3 ( The n-sphere)

The n-space S™ = = (Xq,....0 Xns1) € R“*l,‘xf, ..... X2, :4 is a manifold of dimension n
when equipped with the atlas A = QJ;, ).V, 2wi).<i<n+1 whereforeach 1<i<n+1

(18) U, = (%xl,....,xnﬂ)esn,xlzo }oi(xl, ..... K1) = (Xg s ey Xjg5 Xigs-sXna1)
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So both ¢, and v, just discard the coordinate x; they project onto R" viewed as the hyper plane
x; = 0. A another possible atlas , compatible with A, is A, = @U,9),(V,w) where the
domains that

U=S"\€...0,1 and vV =S"\ ....,0,—1 are the stereographic projection from the north
and south poles, respectively , Both ¢ and y have range R" plus an additional single point at
infinity

Example 2.6.4 (A Torus)

The torus T 2is the two dimensional surface T2 = { (X, y,2)e R3, (\//x% +y? —1)? + z?2 :1/4}

inR3in cylindrical coordinates x=rcos@, y =rsin&,z=0the equation of the torus is

(r—1)2+z? =1/4fix any @,say 6, . Recall that the set of all points in R" that have @= 6, is
an open book , it is a hal-plane that starts at the z axis . The intersection of the tours with that
half plane is circle of radius 1/2 centered on r=1,z=0 as ¢ runs form Oto2~, the point
r=1+1/2cospand & =@,runs over that circle. If we now run o©from Oto2~ the point
(x,y,2)=(@+1/2cosgp)cosd,(1+1/2sin ) Runs over the whole torus . So we may build
coordinate patches for T2 using @ and ¢ with ranges (0,2z) or (-, ) as coordinates ).

I1l. OERATOR GEOMETRIC ON RIEMANNIAN MANIFOLDS

3.1 Vector Analysis one Method Lengths ]
Classical vector analysis describes one method of measuring lengths of smooth paths in R® if
v: 1 > R?is such a paths ,then its length is given by length v =v(t)dt . Where | _is the

Euclidean length of the tangent vector (t) , we want to do the same thing on an abstract manifold

,and we are clearly faced with one problem , how do we make sense of the length | v(t)| ,obviously

, this problem can be solved if we assume that there is a procedure of measuring lengths of
tangent vectors at any point on our manifold The simplest way to do achieve this is to assume
that each tangent space is endowed with an inner product ( which can vary point in a smooth ).
Definition 3.1.1

A Riemannian manifold is a pair (M .g) consisting of a smooth manifold M and a metric g

on the tangent bundle ,i.e a smooth symmetric positive definite tensor field on M . The tensor g
is called a Riemannian metric on M . Two Riemannian manifold are said to be isometric if

there exists a diffeomorphismg:M, — M, such that¢ :g,=g, If (M.g) Is a Riemannian
manifold then , for any x € M the restriction g, :T,(M,)xT,(M,) — R . Is an inner product
on the tangent space T (M) we will frequently use thee alternative notation (-,-), = g,(-,-) the

length of a tangent vector v < T,(M) is defined as usual |v| =g, €.,v>* . If v !b} M is a
piecewise smooth path , then we defined is length by L(v)=?|v(t)|dt. If we choose local

coordinates (x',...,X") on M then we get a local description of ¢ as.
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Proposition 3.1.2
Let be a smooth manifold , and denote by R,, the set of Riemannian metrics on M then R,, is

a non — empty convex cone in the linear of symmetric tensor
Proof :
The only thing that is not obvious is that R,, is non-empty we will use again partitions of unity .

Cover M by coordinate neighborhoods (U ) __.. Let x’ be a collection of local coordinates on
U, . Using these local coordinates we can construct by hand the metric g, on U_ by
g, =@ J+..+ €@

now , pick a partition of unity B — C; (M) subordinated to cover @, ., (i.e) there exists a
map ¢:B — A suchthat vBeB<U,, thendefine g= z £9 #(B) The reader can check

easily g is well defined ,and it is indeed a Riemann metricon M

Example 3.1.3 The Euclidean Space

The space R" has a natural Riemann metric g, = dx*,....,dx" The geometry of ", gO: is the
classical Euclidean geometry

Example 3.1.4 Induced Metrics On Sub manifolds

Let €1,g _be Riemann manifold and S = M a sub manifold if S— M , denotes the natural

inclusion then we obtain by pull back a metric on S,g° =ig”=g/S . For example , any

invertible symmetric nxnmatrix defines a quadratic hyper surface inR" by
H, = R<R",(A,x)=1 where [-_denotes the Euclidean inneron R" , H, hasa natural .
Remark 3.1.5

On any manifold there exist many Riemannian metrics , and there is not natural way of selecting
on of them . One can visualize a Riemannian structure as defining “ shape ” of the manifold .

For example , the unit sphere X' +y‘+z°=1 , Is diffeomorphic to the ellipsoid
€ /13 €*/2° 3 € /3 >-1.but they look “different” by However , appearances may be
deceiving in is illustrated the deformation of a cylinder they look different ,but the metric

structures are the same since we have not change length of curves on our sheep . the conclusion
to be drawn from these two examples is that we have to be very careful when we use the
attribute “different”.
Example 3.1.5 The Hyperbolic Plane
The Poincare model of the hyperbolic plane is the Riemannian manifold €©, g ~where D is the
unit open disk in the plan R" and the metric g is given by .
1 ) ~

=——— @ *+dy’

1_X2 _ yZ (j y —
Example 3.1.6 Left Invariant Metrics on lie groups
Consider a lie group G ,and denote by L. its lie algebra then any inner product <> on L,

induces a Riemannian metrich = (-,-) = on G defined by.
21) hy(, Y)=(x,y) =(L)*X,(L))*Y ,V:igeG,X yeT,(G)

(20) g
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Where (L}). :T,(G)—T,(G) is the differential at g « G of the left translation map L_'. One
checks easily that check easily that the correspondence G e g —(-,-) is a smooth tensor field

,and it is left invariant (i,e) Lyh=h VYgeG . If G isalso compact ,we can use the averaging

technician to produce metrics which are both left and right invariant .

3.2 The Levi-Cavite Connection

To continue our study of Riemannian manifolds we will try to follow a close parallel with
classical Euclidean geometry the first question one may ask is whether there is a notion of “
straight line ” on a Riemannian manifold .In the Euclidean space R3 there are at least ways to
define a line segment a line segment is the shortest path connecting two given points a line
segment is a smooth path v: 1 }> R*satisfying v(t) =0. Since we have not said anything
about calculus of variations which deals precisely with problems of type. (i) we will use the
second interpretation as our starting point ,we will soon see however that both points of view
yield the same conclusion . Let us first reformulate as know the tangent bundle of R?®is
equipped with a natural trivialization , and as such it has a natural trivial connection v° defined

by. V°€, >0 V:i, j wherev°o, =0,Vi, j o, :ai,vi -V,

all the Christ off symbols vanish ,moreover , if g, denotes the Euclidean metric ,then .
(22) (70i go}j’ak}vfjk _goﬁ?aj’ak:—goepvoak}o

VoLV () =0
So that the problem of defining ““ lines ” in a Riemannian manifold reduces to choosing a “
natural ” connection on the tangent bundle of course , we would like this connection to be
compatible with the metric but even so , there infinitely many connections to choose from . the
following fundamental result will solve this dilemma .
Proposition 3.2.1 Levi-Cavite Connection
Consider a Riemannian manifold €4, g _ ,then there exists a unique symmetric connection Vv
on T (M) compatible with the metricg T(V) =0 , V_, =0 the connection V is usually called
the Levi-Civita connection associated to the metric g .
Proof
Uniqueness we will achieve this by producing an explicit description of a connection with the
above two m properties let V' be such a connection , i.e vV, =0 and

vY-v X=K, Y ]vX,Ye(M) forany X,Y,z (M) we have
Z,(X,Y)=9g(V,X,Y)+g(X,V,Y) Since.
(23)

«’Y}Yg ¢’X}Xg (’Z::QVZX’Y}QVYZ’X}QVXY,Z}Q«,VZY:—Q¢,VY2:
—g«CE.Y X FoqK.Y Y Jg«CE. XY 320€,.2,Y
We conclude that.
(24)
1 -~ -
g€ XY == $,¢.z2>v, € x>gqK.Y Iy 3gck.z]x gk x]y

The above equality establishes the uniqueness of V using local coordinates x*,...,x" on M we
deduce from (24) with.
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That g€,,8,.8, =9, :% €0, —2,9,,—8,9,, _.Above the scalarsﬁ- denote the

christoffel symbols of v in these coordinatesi.e vV, 3, =1,,0,, , denotes the inverse of ¢
we deduce .

1 . =
(26) Iij :Eg Qigik +akgij+agik,

Definition 3.2.2 Riemannian Manifold Is Smooth
A geodesic on a Riemannian manifold i €1, g s a smooth path, v:(a,b)— M satisfying

(27) ViV (®)=0

Where Vv is the “ Levi - Civita ” connection. Using local coordinates x*,...,x" with respect to
which the Christopher simples are k, ; and the path v is described v(t) = €' (t)......x"(t) : we
can rewrite the geodesic equation as a second , order nonlinear system of ordinary differential

equations .
d )
28 — =V (t) = X0,
(28) =V =X2
set V%V(t):X'ai +X'V,0,=X0,+XXV,5 =X08, +k X' X5, €, =kji:So the
dt

geodesic equation is equivalent to X *+¢ X 'X '=0,vk =1,...,n Since the coefficients
((ij(X) =K, (X); depend smooth up on, x we can use the classical Banach-Picard

Proposition 3.2.3 Riemannian for any Compact subset
Let €1,g _ be a Riemannian manifold for any compact subset —TM there exists £ > 0such

that for any & X =k there exists a unique geodesic V =V, X :€s,& >>M such that
V (0) = x,V (0) = X

One can think of a geodesic as defining a path in the tangent bundle t — @),V (t) _ .The
above proposition shows that the geodesics define a local flowg on T(M) by

¢ €X =)V SV, X

Definition 3.2.4 Geodesic Low
The local flow defined above is called the geodesic flow the Riemannian manifold €1,g ~ when

the geodesic low is global flow i,e any Vv, X is defined at each moment of t for any
&, X =T(M) , then the Riemannian manifold is call geodetically complete .

Proposition 3.2.5 Conservation of energy
If the path v (t) is a geodesic , then length of Vv (t) is independent of time

Proof : we have
d 2 d ~
(29) VO [ =@V ® =20 €., V®) >0

Thus , if we consider the sphere bundles S, (M) = X eT(I\/I),|X| =r :We deduce that S, (M)
are invariant subset of geodesic flow .
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Definition 3.2.6 Lie algebra Group
Let G Dbe a connected lie group ,and letL, be its lie algebra any X e L. defines an

endomorphism of X of L, by & Y =|,y . The Jacobi identity implies that adjoin
B<.y 3+ KkX).(v) _where the bracket in the right hand side is the usual commutator of two

endomorphism. Assume that there exists an inner product(-,-) on L, such that forany X < L,

the operator adjoin & _is skew-adjoins i.e

(30) ( Ky Jz)=(. K.Y

We can now extend this inner product to a left invariant metric h on G . We want to describe its
geodesic first ,we have to determine associated ““ Levi-civita ”” connection .using (30) we get.

(31)

h€.z,Y == 4h(Y,Z2)-Y(Z,X)+zh(X,Y)-h(K.,Y ¥ +h(k.z . X)-h(E. X

NP

If we take X,Y,Z e L. these vector fields are left invariant ,then
h(Y,Z) =const ,h(Z, X)=const,h(X,Y) =const , S0 that the first three terms in the above
formula vanish we obtain the following equality at1e G

32) ¢ VXZ,Y>:% HWKkzZ)y+(-Fz X))~k xx)
Using the skew-symmetry of ad(X) and ad(Z) we deduce ( Vv, Z.Y >=%< K.z .l ) sothat

leG , V,Z :% K.z ¥:X,z e, . This formula correctly defines a connection since any

X evector (G) can be written as a linear combination X =>¢, X, , &, €C;7(G), X, e L. If
V (t) isa geodesic ,we can write V (t)=xV, X, , so that.

1 -
(33) o:vvu)(t) :izvixi +E§Vivj ilxj_

Since ., X, +— K,, X, we deduce v, =0 i,e V(t)=xV,(0) X, = X . This means thatv is
an integral curve of the left invariant vector field X ,so that the geodesics through the origin
with initial direction X e T,(G) are V, (t) =exp(X(t)) .

Example 2.3.7 ( Surfaces)

Any smooth n-dimensional R"**is an n-dimensional manifold. Roughly speaking a subset of
R"™*™ a an n-dimensional surface if , locally m of the m + n coordinates of points on the surface
are determined by the other n coordinates ina C* way , For example , the unit circle s*isa
one dimensional surface in R?. Near (0.1) a point (x,y) e R?is on st if and only if

y =+v1—x? and near (-1.0), (X, y)ison stifandonlyif y=—/1—x? . The precise

definition is that M is an n-dimensional surface in R™™ if M is a subset of R™™ with the
property that for each z = (z,,...,z,,,,m) € M there are a neighborhood U, of z in R™™ ,and n

integers 1< J; < j, <...< jo,;m , C” function fi (Xj;,....xjn) , ke 4...n+m B4.....0n

such that the point x =(xq,.....X,.m) €U, .
That is we may express the part of M thatisnear z as x;; = fi; (J—l, XjgreeeXjn

Xi2: fiZ(jl’XjZ ...... Xjn’,.....,Ximz fim(jl,sz ...... Xjn/
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Where there for some C* function f,,...,f,,. We many use X;,, X;,,...., X;, as coordinates for

jn
RZin M ~U,.Of course an atlas is A= @, "M,p,,| zeM , With @, (X) = (Xj1,....Xjn)
Equivalently, ™M is an n-dimensional surface in R™™if for each zeM, there are a
neighborhood uU,of zin R™™, and mcC*functions g, :U, - R with the vector
%7gz(z)| 1<k <m linearly independent such that the point xeU, is in M if and only if

g (x)=0forall 1<k <m. To get from the implicit equations for M given by the g, to the
explicit equations for M given by the f, one need only invoke ( possible after
renumbering of x).

Definition 3.2.8 [ Killing Paring ]

Let L be a finite dimensional real lie algebra ,the killing paring or form is the bilinear map.

(34) K:LxL —>R,K&,Y =—tr(ad(X).ad (Y)) V:X,YelL

The lie algebra L is said to be semi simple if killing paring is a duality ,a lie group G is called
semi simple if its lie algebra is semi simple .

3.3 The Exponential Map Normal Coordinates

We have already seen that there are many difference between the classical Euclidean geometry
and the general Riemannian geometry in the large . In particular we have seen examples in which
one of basic axioms of Euclidean geometry no longer holds .Two distinct geodesic (real lines )
may intersect in more than one point . The global topology of the manifold is responsible for
this *“ failure ” . In this we will define using the metric some special collections to being
Euclidean . Let €4, g _ be Riemannian manifold and U ,an open coordinate neighborhood with
coordinate x*,...,x" .We will try to find a local change in coordinate € — y‘: in which the
expression of the metric is as close are to the Euclidean metric g, =i, jdy' dy’. Let qeu ,be
the point with coordinate @,...0 via a linear we may as well assume that g,,(q) =i, j . We
would like “spread” the above equality to an entire neighborhood of q . To achieve this we try to
find local coordinates y° near g such that in these new coordinates the metric is Euclidean up to
order onei,e.

(35) 0,0 = - (D=5 = 24 (@) =0, V31, .k < @

We now describe a geometric way of producing such coordinates using the geodesic flow
.Denote as usual the geodesic from g with initial direction X T, (M). By X_(t) Not the
following simple fact L X eV . Hence, there exists a small neighborhood v of T (M), Such
that , for any X ev the geodesic X (t) is defined for all |t|<1 .we define the exponential
map at q

(36) exp, VT, (M)—>M , X > X, @

The tangent space T,(M) is a Euclidean space , and we can define D,(r)<T,(M), the open
“disk” of radius r centered at the origin we have the following result centered at the origin .we
have the following result

Proposition 3.3.1 Radii

Let €1,g _and g e M as above .Then there exists r =0 such that the exponential map.

(37) exp D, (r)—>M
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Is a diffeomorphism on to .The supermom of all radii r with this property is denoted P,, (q) .

Definition 3.3.2 Injectivity Radius of M

The positive real number P, (q) is called the infectivity radius of M atq the in femur .

(38) P, =inf_ B, (q)

Is called the infectivity radius of M

Lemma 3.3.2 Freshet Differential

The Freshet differential at0<T, (M) of the exponential map ,

D,exp, : T, (M) > Texp, (O)M =T_(M). Is the identity T, (M) —>T_(M)

Proposjtion 3.3.3 Metric Tensor

Let € _be normal coordinates at « M , and denote by g;;,the expression of the metric tensor in

. d. .
these coordinates then we have g, ;(q) =i, j and a)'("k (@)=0 Vi, jeq

Thus ,the normal coordinates provide a first order contact between g ,and the Euclidean metric .
Lemma 3.3.4

In normal coordinates €’ : at @ _ the christoffel symbols ik’ vanish at q

3.4 The Length Minimizing Property Of Geodesics

For eachge M there exists 0<r <P, (q) and &=o0such thatvme B, (q) , we have
g<P,(M) andB_(M)c B,(q) in particular, any two of B,(q) can be joined by a unique
geodesic of length <& . We must warn the reader the above result does not guarantee that the
postulated connecting geodesic lies entirely in B, (q) .This is a different ball game .

Theorem 3.3.5 Unique Geodesic

Letqg,r and & as in the previous and consider the unique geodesic r: p1 }> M of length < &

joining two points B, (q).if w: p1 1> M is a a piecewise smooth path with the same endpoint
as then .

(39) i|(t)|dt£i|w(t)|dt

With equality if and only if w( p,1 )= p1_.Thus is the shortest path, joining its endpoints .

3.4 Riemannian Geometry

Definition 3.4.1 Riemannian Metrics

Differential forms and the exterior derivative provide one piece of analysis on manifolds which ,
as we have seen , links in with global topological questions . There is much more on can do
when on introduces a Riemannian metric . Since the whole subject of Riemannian geometry is a
huge to the use of differential forms . The study of harmonic from and of geodesics in particular ,
we ignore completely hare questions related to curvature.

Definition 3.4.2 Metric Tensor

In informal terms a Riemannian metric on a manifold M is a smooth varying positive definite
inner product on tangent spaceT,. To make global sense of this note that an inner product is a

bilinear form so at each point x , we want a vector in tensor product . 7" ®T~ We can put , just
as we did for exterior forms a vector bundle striation
on.T"M®T M= UT ®T,. The conditions we need to satisfy for a vector bundle are provided two

XM x
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facts we used for the bundle of p-forms each coordinate systemx,........ ,x defiance a basis
X,y ,dx, for each T in the coordinate neighborhood and the n?element .
(40) dx, ®dx, 1<i,j<n

Given a corresponding basis for T ®T . The Jacobean of a change of coordinates defines an
invertible linear transformation . J:T' —T, and we have a corresponding .
(41) JRI=T QT > T ®T,

Definition 3.4.3 Local Coordinate System
A Riemannian metric on manifold M is a section g of T o7 which at each point is symmetric

and positive definite . In a local coordinate system we can write.

(42) 9=xg, € 9xdx,

Where 4 > g, € and is a smooth function , with o & positive definite . Often the tensor
product symbol is omitted and one simply writes. g = 9, € 9xdx,

Definition 3.4.4 Two Riemannian Manifold Is an Isometric

A diffehomorphism F:M — N, between two Riemannian manifold is an isometric if Fg, =g,
Definition 3.4.5 Upper half-plan

Let M = ﬁx,y)eRz:y20:, and g :u ,1f Z=x+iyand
F*y:yopzi(a“b—a?bj then.
i\cz+d cz+d
2 2 d 2 2
(43) FY —(ad —bc)? X+ e | B g
|(cz+d)*|" |ad —bc|"y y

SO these Movies transformation are isometrics of Riemannian metric on the upper half-plan.
Definition 3.4.6 Smooth Curve in M
Let M be a Riemannian manifold and »: p1 }> M a smooth map i,e a smooth curve in M

. az+b
F(z2)=
The length of curveis L(»)and F(Z) -
With a,b,c,d and ad —bc >0, then Fdz =(ad —bc)i2 and .
(cz+d)
(44) (e —fop il |=ed| | @eser
|(cz+d)?|" (ad —bc)*y? y?

So these Movies transformation are isometrics of Riemannian metric on the upper half-plan.
Definition 3.4.7 A smooth Curve
Let M a Riemannian manifold and »: p1 }> M asmooth map i,e a smooth curveinM . The

length of curve is L(y):i g (7,7) dt. Where »'(t)=D, [%j, with this definition , any

Riemannian manifold is metric space define . »
(49) d(x,y)=inf £()eRiy()=y
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are Riemannian an manifold space.
Proposition 3.4.8 Manifold admits a Riemannian Metric
Any manifold a demits a Riemannian metric

Proof :
Take a converging by coordinate neighborhoods and a partition of unit subordinate to covering
on each open setu, we have a metricg, =>dx’ . In the local coordinates , define

g=>¢49,, this sum is well-defined because the support of ¢, . Are locally finite . Since

o, >0 at each point every term in the sum is positive definite or zero, but at least one is positive
definite so that sum is positive definite.

Proposition 3.4.9 The Geodesic Flow

Consider any manifold M and its cotangent bundle T " (M), with projection to the base
p:T"(M)— M, let X be tangent vector to T (M) at the point¢ eT, M then D, (X)eT (M)

so that ¢(X)=¢,(D,(x)) defines a conical a conical 1-form¢ on T (M) in coordinates

(x,y)—>3y,dy the projection p is p(x,y) =x s0if X =>a, §+zbi % so if given take

i o i
the exterior derivative w = —de = > dx, A dy, which is the canonical 2-from on the cotangent
bundle it is non-degenerate, so that the map X — (i x w) from the tangent bundle of T (M) to
its contingent bundle is isomorphism. Now suppose f is smooth function an T~ (M) its derivative
is a 1-form df .Because of the isomorphism a above there is a unique vector field X on T"(M)
such that df =(i xw) from the g another function with vector field Y , then .
(46) Y (@©)=df (Y)=i, -i'X" =—i X'Y* = ~(X),
On a Riemannian manifold we shall see next there is natural function onT (M) . In fact a metric
defines an inner onT~ as well as onT for the map X — g(X,—) defines an isomorphism form

T to T then g(zgijdxjxggk, dX.J=gik which means that g”(dx,,dx,)=g'* where g’
1

denotes the matrix to g,, we consider the function T (M) defined by H(S,) =97 (£,,. <))
Definition 3.4.6 Geodesist Metric
The vector field X on T (M) given by I,w = dH is called the geodesist flow of the metric g

Definition 3.4.7 Geodesic Curve
If »:€b3>T @ Isan integral curve of the geodesic flow. Then the curve P& in (M) is called

a geodesic . In locally coordinates, if the geodesic flow .

(47) X =(ai a%} { b, ayijJ

Proposition 3.4.7 Projects Riemannian Manifold
The function fa above is If €, >¢ &, _

Proof :

Write in coordinates If X =X a, [%J bj[ayij where If 4=y y.dx since X projects on M then

i i

X =zaiaxiby the definition of ¢.Now letm be a Riemannian manifold and H , the function on
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T°(M) defined by the metric as a above , if ¢, is an one parameter group of isometrics , then the
induced diffeomorphisms of T*(M) will preserve the function H so the vector field Y will
satisfyY (H)=0 . that x ¢ =owhere x is the geodesic flow a long the geodesic flow, and is

therefore a constant of integration of the geodesic equations
3.5 Harmonic forms
We mentioned a above that a metric g , defines an inner product not just onT, but also an inner

productg” on T, with this we can define an inner product on pth exterior power T (~"):
(48) CQAA...... Aat,, BABA........AB, =Det ' &,
Thus if dx Adx, A,.cceeeeees , A dx, defines the orientation w=/detg dx A,......... , Adx on a compact

manifold we can integrate this to obtain total volume — so a metric defines not only length but
also volumes, Now take aeA*€ BeA™ € and define f,:A’T, > R,by f,(e)w=/Sra.But we

have an inner product , so any liner map on AT is of the form « — €, for some ye A* € :so we
have a well —defined liner map g — 5B form A™* (;:to N (;:Satisfying €, o w=pAa.
Definition 3.5.1 Hodge Star Operator

The Hodge star operator is the linear map »: ©* €1 3> Q"* €1 _with the property that at each point.
(49) C.pV=ar*p

Proposition 3.5.2 Compact Support M manifold

Let M be an oriented Riemannian manifold with volume for w, and let ce " €1 > g™ € be

forms of compact support then .“*a,p]m:hyﬂe,dﬂjw

Definition 3.5.3 Deferential Laplacian on p-forms
Let M be an oriented Riemannian manifold , then the Laplacian on p-forms is the deferential
operator A:Q° @ > € defined by A:dd” +d'd

Definition 3.5.4 Starting Point

A differential form « e’ @ is harmonic if Az=0,0n a compact manifold harmonic ply a
important role, which there is no time to explore in this course

here is the starting point.

Definition 3.5.5 Harmonic and de Rham Manifold

Let M be a compact oriented Riemannian manifold then :

(i) a p-form is harmonic if and only if de=0and d’a=0

(i) In each de Rham cohomology class there is at most one harmonic from.

Theorem 3.5.6 The Fundamental Theorem of Riemannian Geometry

Suppose M is An m-dimensional smooth manifold , and G is a symmetric covariant tensor
field of rank 2 on M if Q,u'_is a local coordinate system on M then the tensor field G can be

expressed as.

(50) G =g,du' ®du’
On u, where g, =g, is a smooth function onu . U provides a bilinear function onT, @ at
every point peM .Suppose X = Xiaiui‘ Y :Yiaiui then G&,Y >g,X'Y’ .We say that the tensor G

is no negated at the point if , whenever X eTpQ/I: and G&.Y =0 .Forall yct ¢~ it must be
true that X =0 this implies that G is no degenerate at p if and only if the system of linear
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equations g, X'=0 1<j<m has zero as its only solution ( ie) det ﬁij(aj}o if for all
XeT € _we have GE.Y >0 And the equality holds only if x =0
then we say G is positive definite at p . From liner algebra a necessary and sufficient condition
for G to be positive definite that matrix 6“. _is positive definite . Thus a positive definite tensor
G is necessarily non degenerate .

Definition 3.5.7 Generalized Tensor is Riemannian

If an m-dimensional smooth manifold M is given a smooth every no degenerate symmetric
covariant tensor field of rank-2 , G then M s called a generalized tensor or metric tensor or
metric of M . IfG is positive definite then M is called Riemannian manifold.

(Not) : for a generalized Riemannian manifold M ,G =g, du' ®du’specifies an inner product on

the tangent space T (M) at every pointpeM for any X,YeT (M) . let XY =GE&Y =g,0 XY’
When G is positive definite, it is meaningful to define the length of a tangent vector and the
angle between two tangent vectors at the some point |X|=,/g,x'X’ . Thus a Riemannian manifold
is a differentiable manifold which has a positive definite inner product on the tangent space at
every point . The inner product is required to smooth X,Y are smooth tangent vector fields then
X,Y is a smooth on M

Definition 3.5.8 Smooth Parametrzel Curve

dS’ =g,,du’ du’is independent of the choice of the local coordinate systemu' and usually called
the metric form or Riemannian metric (dS) is precisely the length of an infinitesimal tangent
vector and is called the element of are length . Suppose aCc =u’ =u'andt, <t <t, is a continuous
and piecewise smooth parameterized curve on M then the are length of C is defined to be .

51 g du'du’
(1) =9 a ao

Remark 3.5.9 Exist a smooth is nonzero everywhere

The existence of a Riemannian metric on a smooth manifold is an extraordinary result. In general
there may not exist a non-positive . In the context of fiber bundles , the existence of a
Riemannian metric on M implies the existence of a positive definite smooth of bundle of
symmetric covariant tensor of order 2-on M, However for arbitrary vector bundles there may not
exist a smooth which is

nonzero everywhere.

Theorem 3.5.10 Fundamental of Riemannian Geometry

SupposeM is an m-dimensional generalized Riemannian manifold then there exists a unique
tensor — Free and metric compatible connection on M , called the ( Levi-civita connectin of M )
0 ( Riemannian connection of M)

Proof :

Suppose D is a torsion-free and metric — compatible connection onM , denote the connection
matrix of D under the local coordinates U'by W= (vi":where W' =T du“.Then we have

dg, =W/'g, +W/g,, and T, =T,/Denote that T, =g,I} , W, =gW' . Then its follows from (49) and
(50) we get that .

a9, ,
(52) B r 41

aut jik ik
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r, =1 is cycling the indices in (51) we get %inkmgjand%:rﬁﬁrigj And calculating
(50)and (51) we then obtain .
ag, o , ,
(53) SN s R I T IS i e T PR}
2{ou; ou; ou, 2 ou’ ou' ou

The equation is ( Levi-civita connectin of M ) or ( Riemannian connection of M )

3.6 The Spectral Geometry of operators of Dirac and Laplace Type

We have also given in each a few additional references to relevant . The constraints of space
have of necessity forced us to omit many more important references that it was possible to
include and we a apologize in a dance for that . We a the following notational conventions , let
(M,g) ( be compact Riemannian manifold of dim. M with boundary om .Let Greek indices
7,u range from 1tom , and index a local system of coordinates x=@,..........., x"_on the interior

of M expand the metric in the formds®=g, dx“dx’ wereg, =€, .0, and where we adopt the
Einstein convention of summing over repeated indices we let g«be the inverse matrix the

— 1 m
dx=€¢......... , dX for g=,/det@, letv be the” levi-Civita”

connection. We expandV, 0, =T ocdx, . Where T o are the m,R are may then be given by.
RK.Y =V, V,-V,V, -V, and given by .

Riemannian measure is given by

(54) RE.Y,ZW =g@(X.,Y),ZW _
We shall let Latin indices i,j range from 1 to m and index a local orthonormal frame
ey, e, for the components of the curvature tensor scalar curvature 7. Are then given by

setting P, =R, and =P, =R,.. We shall often have an auxiliary vector bundle set V and an

auxiliary given on V , we use this connection and the “ Levi-Civita” connection to covariant
differentiation , let dy be the measure of the induced metric on boundary ém , we choose a local
orthonormal from near the boundaryM |, so that & is the inward unit normal . We let indices
a,b range from 1 to m-1 and index the induced local frame §............ e, forthe tangent bundle f

the boundary , let L, = €. ebe, denote the second fundamental form . we some over indices

with the implicit range indicated . Thus the geodesic curvature K, is given by K =L, . We shall
let denote multiple tangential covariant differentiation with respect to the “ Levi-Civita”
connection the boundary the difference between and being of course measured by the
fundamental form.

3.7 The Geometric of Operators of Laplace and Dirac Type

In this section we shall establish basic definitions discuss operator of Laplace and of Dirac type
introduce the De-Rham complex and discuss the Bochner Laplacian and the weitzenboch
formula .

Let D be a second of smooth sections c-¢ of a vector bundlev over space M , expand

D=— ox,ox, +a"dx, +b :Where coefficient $~,a*,b are smooth endomorphism’s of v, we
suppress the fiber indices . We say that D is an operator of Laplace type if A*,on c-¢is said to

be an operator of Dirac type if A%is an operator of laplace operator of Dirac type if and only if
the endomorphism’s ' satisfy the Clifford commutation relations " y* +y*y* =-2g*(id) . Let A

be an operator of Dirac type and let ¢ =¢,dx'be a smooth 1-form on M we let y€ =< v’ define a
Clifford module structure on v . This is independent of the particular coordinate system chosen .
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We can always choose a fiber metric on so that » is skew adjoin . We can then construct a
unitary connection vonv  so that vy=osuch that a connection is called compatible the
endomorphism if vis compatible we expand A=y V, +v,, w,is tonsorial and does not depend
on the particular coordinate system chosen it does of course depend on the particular compatible
connection chosen.

Definition3.7.1 The De-Rham Complex

The prototypical example is given by the exterior algebra , let c-¢°™m _be the space of smooth p
forms. Let d:c”€'™M 3>c-€*m be exterior differentiation if ¢is cotangent vector , Let
ext (&):w—¢Aw denote exterior multiplication and let int(¢)be the Dual , Interior
multiplication, v(¢) =ext(¢) —int(¢) define module on exterior algebraA€ . Since d+6=v €x' 37% :

d+s1S an  operator of “ Diract type” the a associated laplacian
A =€Q+53=~N..0N ®..&A, decomposes as the “Direct sum” of operators of laplace type
A’ on the space of smooth p forms c-€°m_ on hasA), =-g™ax,g g €x, it is possible to write the
p-form valued Laplacian in an invariant form . Extend the * Levi-Civita” comection to act on
tensors of all types .Let A . =-g“w , wvdefine Bochner or reduced Laplacian , let R given the

associated action of curvature tensor . The “Weitzenbock” formula terms of the ¢ Bochner
Laplacian” in the form

(55) A, =4, %mw} @ R

Auy

This formalism can be applied more generally.

Lemma 3.7.2 Spinner Bundle

Let D be an operator of Laplace type on a Riemannian manifold, there exists a unique connection
vonv and there exists a unique endomorphism E of v , so that Dg=—¢, — E¢gif we express D

locally in the form D= §*“ox éx, +a“ox,+b then the connection 1-form w of Vand the
endomorphism E are given by .

(56) w, :% € a2 +97T,, id :and E=b—g™“@w, +ww, —wT",,.

Letv be equipped with an auxiliary fiber metric, then D is self-adjoin if and only if v is unitary
and E is self-adjoin we note if D is the Spinner bundle and the “Lichnerowicz formula” with
our sign convention that E = —%J (id) where J is the scalar curvature.

Definition 3.7.3 Heat Trace Asymptotic for closed manifold

Throughout this section we shall assume that D is an operator of Laplace type on a closed

Riemannian manifold (M,g). We shall discuss the L* - spectral resolution if D is self adjoin ,
define the heat equation introduce the heat trace and the heat trace asymptotic present the leading
terms in the heat trace

Asymptotic references for the material of this section and other references will be cited as
needed , we suppose that D is self-adjoin there is then a complete spectral resolution of D on
1>¢_. This means that we can find a complete orthonormal basis 4 for 1>¢_ where the g4 are a

smooth sections to vV which satisfy the equation D¢, = 1.4, .

3.8 Inverse Spectral Problems in Riemannian Geometry
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In al-arguably one the simplest inverse problem in pure mathematics ““ can on hear the shape of
drum “ mathematically the question is formulated as follows , let @ be a simply connected plane
domain ( The drumhead bounded by a smooth curve ») , and consider the wave equation on @

with . Dirichlet boundary condition on - ( the drumhead is clamped at boundary ) .

(57) Au((,t::FUn((,t: in Q , UGt =0 iny

The function U (x,t) is the displacement of drumhead as vibrates at positionx at time t
looking for solutions of the formu &t >-Re ev&_ (normal modes) leads to an eigenvalue
problem for the Dirichlet Laplacianone Av€ > iv€ =0 inQ , v€ =0 ony

Where i=w?/c? , we write the infinite sequins of Dirichlet eigenvalues for this problem as
AQ>, orsimply £ 3 , if the choice of domain «is clear in context , Kans question means
the following is it possible to distinguish “ drums “ @ and @, with distinct ( modulo isometrics )
bounding curves y, and y, simply by ( hearing ) all of the eigenvalues of Dirichlet Laplacian some

surprising and interesting results are obtained by considering the heat equation on @ with
Dirichlet boundary conditions, which given rise to the same boundary value
problem as before the heat equation is .

AUt FU &t inQ
(58) Ut =0 on y
U&O > f€

Whereu €.t is the temperature at point x and time t , and f(x) is the initial temperature
distribution. This evolution equation is formal solution. U &t > € f "¢ . Where the operator e*
can be calculated using the spectral resolution ofa . Indeed if ¢4 & is the normalized
eigenfunction of the boundary value problem with eigenvalue 2 the operator e“has integral
Kernel k (t,x, y) the heat Kernel given by .

(59) k(t.x,y)=Se "€ 4 ¢
The trace of k(t,x,y) is actually a spectral in variant by (59) we can compute .
(60) k(t,x,y) = ée"’“‘

(Not) that the function (60) determines the spectrum 4 7, to analyze the geometric content of
spectrum, one calculates the by completely different method one constructs the heat kernel by
perturbation from the explicit heat kernel for the plane, and then on computes the trace explicitly
. It turns out that the trace has a small-t asymptotic expansion.

Jim L )
(61) gjlk(<,x,tij~4”t € +ra,+at+.... .
Where a,=areaQ ,a =length € , Al though a strict derivation is a bit involved which shows
why a, and a should given the area of @ and length of » the heat kernel in the plan is .

k, €, y,t}ﬁexp (|x—y|Z 4z, we expect particle that , for small times K& xt >k €xt_ (a

Brownian particle starting out the interior doesn’t the boundary for a time of order +t ).

(62) [ K&x,t dx~| ko(,x,tﬂx:i are Q_
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For times of order +t , boundary effects become important we can approximate the heat kenrnel
near the boundary locally by ( method images ) locally the boundary looks the line
x, =0 inthe x —x, plane, letting x— x" be , K,&xt =k &xt >k&y,t Dvanishes x =0 hence

1_ e72n’2“

K, €xt ¥ where s . Is the distance from x to the boundary , writing the volume integral

for the additional term as an integral over the boundary curve and distance from the boundary
1i-L e#ndsds we have.
yodat

~, area Q@ length ¢ 31 (1
(63) £K(,x,t)1x~ o n ﬂ+(ﬁ)

it follows that the is spectral set of a given ( drum ) @ contains only drums with the same area
and perimeter here we will briefly discuss the generalization of kais problem and some of the
known results. A Riemannian manifold of dimension n is a smooth n-dimensional manifoldm .
equipped with a Riemannian metric g which defines the length of tangent vectors and determines
distances and angles on the manifold . The metric also determines the Riemann curvature tensor
ofM . In two dimensions , the Riemannian curvature tensor is in turn determined by the scalar
curvature, and in three dimensions it is completely determined by the Ricci curvature tensor. If
M is compact the associated Laplacian has infinite set of discrete eigenvalues 4 3=1what is the

geometric content of the spectrum for a compact Riemannian manifold. Constructs a pair 16-
dimensional torii with with the same spectrum . The torii T and T, are quotients of R"by lattices
I,andT,of translations of R". Since the tow torii are isometric of and only if their lattices are
congruent, it suffices to construct a pair of non-congruent 16-dimensional lattices whose a
associated torii have the same spectrum .To understand the analysis involved in Milnor’s
construction consider the following simple “ trace formula” for a torus T"=R"/I" which
computes the trace of the heat kernel on a torus in terms of lengths of the lattice vectors to the
heat kernel on the torus is given by the formula.
VO

a )
(64) Kl.(<,x,t:=zI k, €+w,y,t Where K, ¢ x,th=%’z}ewz”‘
Milnor noted that there exist non-congruent lattices in 16-dim. With the same set of *“ length “
M:wer first discovered by the trace of the heat kernel determines the spectrum and the heat

trace is in turn determined by the lengths, it follows that the corresponding non-isometric torii
have the same spectrum.

Example 3.8.1 Riemannian Manifold with Same Spectrum

Riemannian manifold with the same spectrum letter constructed continuous families of is
spectral manifold in sufficiently high dimensionn>5 two major questions remained:

(i) can one show that the is spectral set of given manifold at finite in low dimension .

(i1) can on find counterexamples for Kicks original problem , can one construct is spectral , non-
congruent planar .

Definition 3.8.2 Some Positive Results

In proved one of the first major positive results on is spectral sets of surfaces and planar domains

informally. A sequence of planar domains ©, converges in C”since to a limiting non-
degenerate set compact surfaces S converges inC~sense to limiting non-degenerate surfaces ,
converge in C*sense to a positive definite metric on s
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Theorem 3.8.3
(i) Let &, be a sequence of is spectral planar domains there is a subsequence which converges in

C~ sense to no degenerate limiting surface.
(i) Let s be a sequence of is spectral compact surfaces there is a subsequence of the s

converging in C*sense to a non-degenerate surface s .

3-5-5 Theorem : [B]
Suppose N, is a sequence if is spectral manifold such that either .

(i) All of the M, - have negative sectional curvatures .
(ii) All of the m,-have Ricci curvatures bounded below .

Then there are finitely many diffeomorphism types and there is a subsequence which convergent
inC~to a no degenerate limiting manifold .

65 A7 oy (97" dy” j
(65) —® [ T t,

dt ° dt
we many k bout smooth curves that is curves with all continuous higher derivatives cons the
level surface f €x*, x2,...,x" }cof a differentiable function f where x'to €—th _coordinate

the gradient vector of f at point P = x*(P), x*(P),.....x"(P)is s :( of of j is given
2 ox"

a vector u=(u',...,u") the direction derivative D, f =vVf .o = il

ut ..+ _u, the point
X ox"

1

P on level surface f €, x2,...,x" / the tangent is given by equation.

81: 1 1 af n n i
(66) pwe (P)Y(X =xDH(P)+....+ PV P)Y(X"—=x")(P)=0

For the geometric views the tangent space shout consist of all tangent to smooth curves the point
P, assume that is curve through t = t, is the level surface.
(63) F € %%, x" >c, f €1),721),...."(t) >chby

taking derivatives on both % © Tty +....+ afn (P) 7" (t)) = 0 and so the tangent line of » is

ox
really normal orthogonal to vf , where” runs over all possible curves on the level surface

through the point P . The surface M be acC~*manifold of dimension n withk >1the most
intuitive to define tangent vectors is to use curves , pe< M be any point on M and let

v: +e,¢ > M be ac*curve passing through p that is with (M) = p unfortunately if M is not
embedded in any R" the derivative »'(M) does not make sense ,however for any chart @, at p
the map - at aC*curve in R"and tangent vector v=@ov (M) is will defined the trouble is
that different curves the sameV given a smooth mapping f : N — M we can define how tangent
vectors inT N are mapped to tangent vectors inT,M with @, ¢ choose chartsq = f (p) for
pe N and &,y forqe M we define the tangent map or flash-forward of f as a given tangent
vector. X, = [y &T Nanddf.TM , .y FFor |

A tangent vector at a point p in a manifold M is a derivation at p, just as for R" the tangent at
point p form a vector space T,(M) called the tangent space of M at p, we also write T,(M)

a differential of map f :N — M be a C* map between two manifolds at each point p € N the
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map F induce a linear map of tangent space called its differential p, . :T,N — T )N as
follows it X , e T, N then F.(X,) is the tangent vector in T ,yM defined

(64) € (X,) J=X,Cf-F ER , feC”(M)

The tangent vectors given anyC® - manifold ™M of dimensionnwithk >1for any pe M
,tangent vector to M at pis any equivalence class of C*- curves through pon ™M modulo the
equivalence relation defined in the set of all tangent vectors at p is denoted by T,M we will show
thatT,M is a vector space of dimensionnof M . The tangent space T,M is defined as the
vector space spanned by the tangents at p to all curves passing through point p in the manifold
M, and the cotangent T, M of a manifold at p< M is defined as the dual vector space to the

tangent space T,M , we take the basis vectors g, =[%) for T,m and we write the basis
X

vectors T, M as the differential line elements e’ = dx' thus the inner product is given by.

(65) <a/ ox, dx‘> =5

3.1 Definition

Let M,and M, be differentiable manifolds a mapping ¢ :M; — M, is a differentiable if it is
differentiable , objective and its inverse ¢ *is diffeomorphism if it is differentiable ¢ is said to
be a local diffeomorphism at p < M if there exist neighborhoods U of pand v of ¢(p) such

that ¢:U —V is a diffeomorphism , the notion of diffeomorphism is the natural idea of

equivalence between differentiable manifolds , its an immediate consequence of the chain rule
that if ¢ : M; — M, is a diffeomorphism then.

(66) do:T,M; 5T, )M,

Is an isomorphism for all ¢ : M; — M, In particular , the dimensions of M,and M, are equal a
local converse to this fact is the following de:T,M; — T, ,;M, is an isomorphism then ¢ is a
local diffeomorphism at pfrom an immediate application of inverse function in R", for
example be given a manifold structure again A mapping f*:M — N in this case the
manifolds N and M are said to be homeomorphism , using charts (U ,¢)and (V,y) for N and
M respectively we can give a coordinate expression f :M — N

3.2 Definition

Let M and M ;'be differentiable manifolds and let ¢ : M, — M, be differentiable mapping
for every peM;,and for eachv e T M, choose a differentiable curve «:(—s,&) — M, with
a(M)=pand «o'(0)=vtake «o-p=pgthe mapping de,:T,(p)M,by given by
do(v) = g/(M) is line of « and¢: M;* — M be a differentiable mapping and at p e M, be
suchde : T,M; —T,M, is an isomorphism then ¢ is a local homeomorphism .

3.3 Proposition

Let M"and M " be differentiable manifolds and let ¢ :M; — M, be a differentiable mapping ,
for every pe M, and for each veT,M,choose a differentiable curve «:(-s,5) — M, with
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a(@)=p, a'(0)=vtake B=gpoathe mapping de:T,M; >T,,M,given by
de, (v) = B'(0) is a linear mapping that dose not depend on the choice of « .

3.5Theorem

The tangent bundleTm has a canonical differentiable structure making it into a smooth 2n-
dimensional manifold , where N=dim. The charts identify anyU, eU(T,M) < (TM) for an
coordinate neighborhoodU = M , withU = R" that is hausdorff and second countable is called (
The manifold of tangent vectors )

Definition 4.6
A smooth vectors fields on manifolds M is map X :M — TM such that

(i) X(P)eT,M foreveryG
(i) in every chart X is expressed as a; (6/ox;) with coefficients a, (X) smooth functions of the

local coordinates X; .

4.7 Theorem
Suppose that on a smooth manifold ™ of dimensionn there existn vector fields

&9, x@, .. x™ ;for a basis of T,M at every point pof M, thenT,M is isomorphic to
M =<R"m here isomorphic means that T™M and M xR"are homeomorphism as smooth
manifolds and for every pe M , the homeomorphism restricts to between the tangent space
T,M and vector space § 3R".

Proof:

define 7 :aeT,M < TM on other hand , for any MxR"for somea; € Rnow define
®:aeTM — Q(s):al,....,an e M xR" s it clear from the construction and the hypotheses of

theorem that @ and @—*are smooth using an arbitrary chart ¢:U < M — R" and corresponding
chart
(67) oT: 7 (U)cTM —> R"x R™

IV. GET PEER REVIEWED

I The basic notions on differential geometry knowledge of calculus , including the geometric
formulation of the notion of the differential and the inverse function theorem.

Il A certain familiarity with the elements of the differential Geometry of surfaces with the basic
definition of differentiable manifolds , starting with properties of covering spaces and of the
fundamental group and its relation to covering spaces .
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